Counting zeros of Dedekind zeta functions
نویسندگان
چکیده
Given a number field K K of degree alttext="n Subscript upper n encoding="application/x-tex">n_K and with absolute discriminant alttext="d d encoding="application/x-tex">d_K , we obtain an explicit bound for the N K Baseline left-parenthesis T right-parenthesis"> N ( T stretchy="false">) encoding="application/x-tex">N_K(T) non-trivial zeros (counted multiplicity), height at most T"> encoding="application/x-tex">T Dedekind zeta function alttext="zeta s ? s encoding="application/x-tex">\zeta _K(s) . More precisely, show that greater-than-or-equal-to 1"> ? 1 encoding="application/x-tex">T \geq 1 maxsize="1.623em" minsize="1.623em">| ?<!-- ? <mml:mfrac> ?<!-- ? </mml:mfrac> log ?<!-- ? minsize="1.623em">( 2 e minsize="1.623em">) ?<!-- ? <mml:mn>0.228 + 23.108 4.520 , encoding="application/x-tex">\begin{equation*} \Big | N_K (T) - \frac {T}{\pi } \log ( d_K {T}{2\pi e}\Big )^{n_K}\Big )\Big \le (\log + n_K T) 4.520, \end{equation*} which improves previous results Kadiri Ng, Trudgian. The improvement is based on ideas from recent work Bennett et al. counting Dirichlet L"> L encoding="application/x-tex">L -functions.
منابع مشابه
Real zeros of Dedekind zeta functions of real quadratic fields
Let χ be a primitive, real and even Dirichlet character with conductor q, and let s be a positive real number. An old result of H. Davenport is that the cycle sums Sν(s, χ) = ∑(ν+1)q−1 n=νq+1 χ(n) ns , ν = 0, 1, 2, . . . , are all positive at s = 1, and this has the immediate important consequence of the positivity of L(1, χ). We extend Davenport’s idea to show that in fact for ν ≥ 1, Sν(s, χ) ...
متن کاملZeros of Dedekind zeta functions in the critical strip
In this paper, we describe a computation which established the GRH to height 92 (resp. 40) for cubic number fields (resp. quartic number fields) with small discriminant. We use a method due to E. Friedman for computing values of Dedekind zeta functions, we take care of accumulated roundoff error to obtain results which are mathematically rigorous, and we generalize Turing’s criterion to prove t...
متن کاملZeros of Dedekind Zeta Functions and Holomorphy of Artin L-functions
For any Galois extension of number fields K/k, the object of this note is to show that if the quotient ζK(s)/ζk(s) of the Dedekind zeta functions has a zero of order at most max{2, p2 − 2} at s0 6= 1, then every Artin L-function for Gal(K/k) is holomorphic at s0, where p2 is the second smallest prime divisor of the degree of K/k. This result gives a refinement of the work of Foote and V. K. Murty.
متن کاملThe zeros of Dedekind zeta functions and class numbers of CM-fields
Let F ′/F be a finite normal extension of number fields with Galois group Gal(F ′/F ). Let χ be an irreducible character of Gal(F ′/F ) of degree greater than one and L(s, χ) the associated Artin L-function. Assuming the truth of Artin’s conjecture, we have explicitly determined a zero-free region about 1 for L(s, χ). As an application we show that, for a CM-field K of degree 2n with solvable n...
متن کاملStatistical properties of zeta functions' zeros
The paper reviews existing results about the statistical distribution of zeros for three main types of zeta functions: number-theoretical, geometrical, and dynamical. It provides necessary background and some details about the proofs of the main results. AMS 2000 subject classifications: 11M26, 11M50, 62E20.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2021
ISSN: ['1088-6842', '0025-5718']
DOI: https://doi.org/10.1090/mcom/3665